- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Sawas, Abdulrazzag (4)
-
Arava, Leela Mohana (3)
-
Thangavel, Naresh Kumar (3)
-
Babu, Ganguli (2)
-
Arava, Leela_Mohana_Reddy (1)
-
Cannon, Andrew (1)
-
George, Antony (1)
-
Gottumukkala, Sundeep Varma (1)
-
Islam, Md Mahbubul (1)
-
Jayan, Rahul (1)
-
Mahankali, Kiran (1)
-
Masurkar, Nirul (1)
-
Nagarajan, Sudhan (1)
-
Neumann, Christof (1)
-
Rajendran, Sathish (1)
-
Ryan, Emily (1)
-
Tang, Zian (1)
-
Turchanin, Andrey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sawas, Abdulrazzag; Babu, Ganguli; Thangavel, Naresh Kumar; Arava, Leela Mohana (, Electrochimica Acta)
-
Babu, Ganguli; Sawas, Abdulrazzag; Thangavel, Naresh Kumar; Arava, Leela Mohana (, The Journal of Physical Chemistry C)
-
Rajendran, Sathish; Tang, Zian; George, Antony; Cannon, Andrew; Neumann, Christof; Sawas, Abdulrazzag; Ryan, Emily; Turchanin, Andrey; Arava, Leela_Mohana_Reddy (, Advanced Energy Materials)Abstract Suppressing Li dendrite growth has gained research interest due to the high theoretical capacity of Li metal anodes. Traditional Celgard membranes which are currently used in Li metal batteries fall short in achieving uniform Li flux at the electrode/electrolyte interface due to their inherent irregular pore sizes. Here, the use of an ultrathin (≈1.2 nm) carbon nanomembrane (CNM) which contains sub‐nanometer sized pores as an interlayer to regulate the mass transport of Li‐ions is demonstrated. Symmetrical cell analysis reveals that the cell with CNM interlayer cycles over 2x longer than the control experiment without the formation of Li dendrites. Further investigation on the Li plating morphology on Cu foil reveals highly dense deposits of Li metal using a standard carbonate electrolyte. A smoothed‐particle hydrodynamics simulation of the mass transport at the anode–electrolyte interface elucidates the effect of the CNM in promoting the formation of highly dense Li deposits and inhibiting the formation of dendrites. A lithium metal battery fabricated using the LiFePO4cathode exhibits a stable, flat voltage profile with low polarization for over 300 cycles indicating the effect of regulated mass transport.more » « less
An official website of the United States government
